of this study is to determine if cavity nesting birds using cavities present in the forest (secondary cavity-nesters) change their abundance and to understand the relationship between this group of species and cavity availability in piedmont Yungas forest being logged in northwestern Argentina. During two breeding seasons we conducted 30 point counts of 10 minutes length and 50 meter fixed-radius across three reference sites and three sites with forestry management in order to determine bird abundance. Additionally, we selected 10 to 20 circular plots to evaluate density of trees with cavities. We found higher abundance of secondary users in sites without forestry management compared to those being logged (6.41 ± 4.16 vs. 3.36 ± 2.73; U Mann-Whitney = 22771 - p= <0.0001). Cavity density was also higher in sites without forestry management (14.88 ± 7.50 vs. 6.20 ± 4.05; U Mann-Whitney = 1147.50 - p= <0.0001). Secondary user abundance was positively correlated with cavity density (R²= 0.78 – p= 0.003). The relationship between secondary users and cavity density suggests the need for maintaining these cavities available in sites with forestry management.

10675 BIRDS AND CAVITIES: KEY INTERACTIONS TO MANAGE LOGGED FORESTS

Vivanco, Constanza1,2; Ruggera, Roman1; Schaaf, Alejandro1; Politi, Natalia1; Rivera, Luis1 1Instituto de Eco-Regiones Andinas (INECOA-CONICET) - Universidad Nacional de Jujuy 2contygvivanco@hotmail.com

Comparing interaction networks between cavity-nesting birds and trees, in undisturbed sites (US) and logged sites (LS), is useful for management guidelines of the latter. We present results of an ongoing monitoring of three US’s and four LS’s in piedmont forests of Salta and Jujuy. We recorded 229 interactions among 14 tree species and 20 bird species (five excavators, and 15 non-excavators) at UD’s, and 50 interactions between eight tree species and 14 bird species (four excavators and 10 non-excavators) at LS’s. Non-excavators mostly used decay-formed cavities; woodpecker-excavated cavities were more often used at LS’s (25% of non-excavator interactions, n=24) than at US’s (10%, n=68). Key tree species based on Importance and Strength indices were Calycophyllum multiflorum, Anadenanthera colubrina and "snags" (dead trees) at US’s, and snags, A. colubrina and Astronium urundeuva at LS’s. Simulated extinction of key tree species disappeared 32% of bird species at US’s, and 46% at LS’s. There were three interaction modules at US’s; a fourth module of non-excavating birds with decay-formed cavities in snags was added at LS’s. Other parameters were similar in SSD vs. SAF: connectance 0.15 vs. 0.16; interaction dominance 0.135 vs. 0.140; and interaction evenness 0.957 vs. 0.962. The exposed differences suggest a shortage of decay-formed cavities in living trees at LS’s, possibly due to the high extraction of C. multiflorum.

CONSERVATION

10239 CURRENT THREATS FACED BY NEOTROPICAL PARROT POPULATIONS

Berkunsky, Igor1; Quillfeldt, Petra2; Brightsmith, Donald3; Masello, Juan2; Abbud, M. C.4; Aguilar, J.M.R.E.5; Alemán-Zelaya, U.6; Aramburú, R.M.7; Arce Arias A.8; Balas McNab,
the rapid development of anthropogenic threats, updated data are needed to strategize

Neotropical species under threat. The drivers of this situation appear to be manifold and

Psittaciformes (parrots, c

Museo de Zoología, Facultad de Ciencias, Mexico; 70U.S. Fish and Wildlife Service, Puerto Rican Parrot Recovery Program, Puerto Rico; 71Universidad de Nuevo León, Mexico; 72Cátedra de Ecología General y Desarrollo Sustentable, CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina; 73Instituto Multidisciplinar para la Conservación y la Gestión de Vida Silvestre (ICMBio), Brazil; 74Universidade de São Paulo (MZUSP), Brazil; 41University of Cape Town, South Africa; 42Birdlife International; 43Paso Pacífico, Nicaragua; 22Centro Nacional de Pesca, Ministry of Agriculture and Fisheries, Mexico; 23Universidade Federal do Pará, Instituto de Ciências Biológicas, Brazil; 24Guyra Paraguay, Asociación Civil; 1Universidad Nacional Autónoma de México, Estación Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico; 15Instituto Venezolano de Investigaciones Científicas, Venezuela; 16Proyecto Selva d

ABS

ABS


Instituto Multidisciplinar sobre Ecosistemas y Desarrollo Sustentable, CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina; 71Unidos por las Guacamayas A.C., 72Universidad de Nuevo León; 73Instituto de Biología, Universidad Nacional de México, Mexico; 74Instituto de Biología, Universidad Nacional de México, Mexico.
wide-ranging consultation involving biologists, wildlife managers, government agencies and non-governmental conservation organizations. We gathered up-to-date information on threats affecting 192 populations of 96 Neotropical parrot species across 21 countries. Moreover, we investigated associations among current threats and population trends. Many populations were affected by multiple threats. Agriculture, capture for the pet trade, and logging each affected >55% of the populations, suggesting a higher degree of risk than previously thought. In contrast to previous studies at the species level, our study showed that the threat most closely associated with decreasing population trends is now capture for the domestic pet trade. Other threats associated with decreasing populations include small-holder farming, rural population pressure, nest destruction by poachers, agro-industry grazing, small-holder grazing, and capture for the international pet trade. Conservation actions have been implemented on <20% of populations. Our results highlight the importance of a population level approach in revealing the extent of threats to wild populations. It is critical to increase the scope of conservation actions to reduce the capture of wild parrots for pets.

10336 THE BIRD COMMUNITY OF BAÑADOS DE FIGUEREA, AN IMPORTANT AICA OF SANTIAGO DEL ESTERO, ARGENTINA

Echevarria, Ada Lilian1,2; Martínez, María Valeria1; Fanjul, María Elisa1 1Instituto de Vertebrados - Ornitología, Fundación Miguel Lillo, Miguel Lillo 251, 4000, Tucumán, Argentina
2alechevarria@lillo.org.ar

In the vast plain formed along the Salado River, north of Argentina, there are the Bañados de Figueroa, a complex system of forests, grasslands, crops, natural and artificial wetlands. At present, this complex system has been modified by the influence of man, by modifying the natural limits of Bañado, with works of hydraulic engineering, which have altered the regime of the river and of the wetland as a whole. The aims of this work are to describe the diversity, the trophic assemblages and the variation of the bird community, in three artificial reservoirs that are part of the Bañado. Transects of long and fixed width were performed, from spring 2008 to winter 2012, with a total of 106 samples. We identified 154 species, with a total abundance of 164,051 individuals, of which 38.31% of species are migratory. The species were grouped into five assemblages according to feeding strategies and diets used by birds. The best represented assemblages were the ones that looked for the food moving between the vegetation (64 species) and those that look for the food walking in beaches and / or shallow waters (43 species); in addition, the omnivorous (53 species) and insectivorous-invertivorous species (49 species) were dominant. It is necessary to maintain the different wetlands of this system, which is considered an important area for bird conservation (AICA), to implement guidelines to regulate the hydrological regime to conserve the biological potential of the area.