Distribution of nearctic shorebirds and other water species in the Pantanal
Distribution of Nearctic Shorebirds and Other Water Species in the Pantanal

BIRDS IN THE PANTANAL

R.I.G. Morrison • I.L. Serrano • P.T.Z. Antas • K. Ross

September 2008
<table>
<thead>
<tr>
<th>WWF-BRAZIL</th>
<th>TECHNICAL SUPPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secretary-General</td>
<td>Technical Coordination</td>
</tr>
<tr>
<td>Denise Hamú</td>
<td>Inês Serrano</td>
</tr>
<tr>
<td>Regional Programme</td>
<td>Researchers</td>
</tr>
<tr>
<td>Conservation Superintendence</td>
<td>Richard Guy Morrison, Inês Serrano, Paulo Antas and R. Ken Ross</td>
</tr>
<tr>
<td>Cláudio Maretti</td>
<td></td>
</tr>
<tr>
<td>Pantanal Forever Programme</td>
<td>Editing and Revision</td>
</tr>
<tr>
<td>Coordination</td>
<td>Geralda Magela (WWF-Brazil)</td>
</tr>
<tr>
<td>Michael Becker</td>
<td></td>
</tr>
<tr>
<td>Communication Coordination</td>
<td>Translation</td>
</tr>
<tr>
<td>Denise Oliveira</td>
<td>Cristiano R. Lima</td>
</tr>
</tbody>
</table>

Programme Assistant

Elisângela Pinheiro (WWF-Brazil)

Photos

Mark Peck e Cassiano Zaparoli

Design and page layout

Márcio Duarte – M10 Design
CONTENTS

Presentation 4
Executive Summary 6
Introduction 8
Methods 13
 Routes flown over 13
 Data analysis 15
 Area of study 16
 Descriptions of habitat 20
Nearctic Shorebirds
 Other species of nearctic shorebirds 42
 Neotropical species 48
Discussion 76
Acknowledgements 81
Bibliography 82
Apendix 89
Those who visit the Pantanal, in the Brazilian Mid-west region and also in Bolivia and Paraguay, are dazzled by the great quantity and variety of birds that inhabit the region.

Also known as the Kingdom of Waters – with big flooded areas throughout almost all of the rainy period – the Pantanal has rich animal and plant biodiversity, with 656 bird species.

Due to environmental characteristics and geographic location, the Pantanal is also on the route of migratory birds, which find ideal conditions to live and reproduce in the region. Thus, it is one of the best places for bird watching in Brazil.

A study conducted in 1996 about the Distribution of Nearctic Shorebirds and other Water Species in the Pantanal recorded the birds found in the region’s salt water beds, flooded, planes and plateau areas. The study is a guide for those who want to know more about the wealth of birds in the Pantanal.

Among the surveyed species, there are some very well known as the Jabiru, symbol of the Pantanal and the Macaw – which, thanks to conservation projects supported by WWF-Brazil, has experienced a considerable increase in its population. However, there are others which are not as well known like the Yellow-billed Tern and the Coscoroba Swan.
Because of the importance of the researchers’ work, WWF-Brazil – institution that has worked with conservation projects in the region since 1998, through the Pantanal Forever Programme decided to support this publication, making it accessible to the public.

WWF-Brazil believes that scientific knowledge is essential for conservation actions. Our objective, in supporting this publication, is to give due value to the Pantanal’s wealth, as the birthplace of a great variety of birds and help to disseminate scientific knowledge.

On top of the musical and scenic spectacle that birds provide us with when we watch them, they are very important environmental indicators and essential to the composition of the Pantanal’s landscape. Our intention is to encourage, through information, the conservation of the Pantanal and of the species that chose it as their birthplace, where they reproduce and live.

Denise Hamú
CEO
WWF-Brasil

Micheal Becker
Coordinator
Pantanal Forever Programme
Aerial surveys were conducted in October 1996 in the Pantanal – the biggest and most important wetland in the planet – to determine the distribution and abundance of:

1. nearctic and neotropical shorebirds during the southward migration period of nearctic species
2. neotropical water birds
3. investigate the use of habitat by nearctic and neotropical species.

It is expected that through this work, the bases to assess potential or effective impacts of business ventures, which may have an effect on the region’s water regime, will be established. These were the first large scale surveys carried out in the Pantanal for these avifaunal groups.

The results point to a clear difference between the use of habitat and the regional distribution of nearctic and neotropical shorebirds, when compared to a great variety of other neotropical water species. The shorebirds concentrate around a number of salty water lagoons – locally called salty bays or just salt beds – in the Pantanal’s central region.

Additionally, the habitats formed by small plants from the Graminease family, mainly found in the Nhecolândia region,
showed to be very important for two nearctic shorebird species. In contrast, the majority of the neotropical species groups were found in the most diverse habitats and regions of the Pantanal.

Generally speaking, the number of neotropical and nearctic shorebirds found in the salty water lagoons are of international relevance, exceeding the limit for inclusion in the Western Hemisphere Shorebird Reserve Network as an International Reserve or under the Ramsar Convention (relative to the preservation of water environments at a world level).

The distribution characteristic of the shorebird species in the Pantanal shows that special conservation measures need to be applied to this important bird group.
INTRODUCTION

The Pantanal (Figure 1) is one of the biggest and most important fresh water wetlands in the world (Bucher et al. 1993, By 1995, Swarts 2000), as well as being the biggest and probably the most important wet area for water birds in South America (Scott and Carbonell 1986). It is recognized world wide for its diversity and abundance of wild life (Alho et al. 1988, Por 1995).

The region shelters impressive numbers of plant species (over 1,700 species identified), fish (over 400 species), mammals (80 species), butterflies (over 1,100 species) and birds – 463 in the plane itself and over 650 species, when considering the immediate surroundings (Marins et al. 1981, Brown 1986, Francischini 1996, Pott and Pott 1997, Tubelis and Tomas 2003).

Its importance and the need for its protection and preservation has been recognized by several initiatives, including its designation as a preservation area under the RAMSAR Convention and as Human Heritage, as well as the creation of several national and state, public and private protected areas, such as the establishment of the Pantanal’s Biosphere Reserve (Swarts 2000, UNESCO 2001, WCMC 2001, RAMSAR 2002).

Although the biggest part of the Pantanal is in remote and not very altered areas, the increasing interest in the region’s eco-
FIGURE 1 • Regions and routes sampled in the Pantanal. The routes flown are illustrated by a dotted line, with the sector’s limits shown by a bar. The acronyms for the regions are: CUIA (Cuiabá), POCO (Poconé), CACE (Cáceres), JAUR (Jaurú), PARA (Paraguai), COGR (Corixo Grande), BACU (Low Cuiabá river), SALO (São Lourenço river), PIIT (Piquiri/Itiquira rivers), ALTA (High Taquari river), NHEC (Nhecolândia), PAIA (Paiaguás), BASA (Bays and Salt beds), JACA (Jacadigo), NABI (Nabileque), POMU (Murtinho Port), MIAQ (Miranda/Aquidauana), NEGR (Negro river).
nomic development has resulted in various environmental threats (Dolabella 2000). Deforestation for cattle breeding, pasture land and the growth of agricultural activities – in particular in the higher upstream areas of the surrounding plateau, for example – led to the alteration of the water flow and an increase in silting, especially along the Taquari and São Lourenço Rivers. The building of dams and dikes altered the normal water flow, resulting in flooding and drought in some areas, with the loss of the soil’s fertility in others. Pollution problems have resulted from the use of agrochemicals, emission of non-treated sewage and industrial activities, such as ethanol production and prospection for gold and diamond. Overfishing and, at a smaller scale, hunting, have affected wild life populations.

Big scale development projects, the expansion of the Brazil-Bolivia pipeline and a Waterway on the Paraguay River may bring expressive and/or irreversible changes to the water standards that control the region’s ecological cycles, as well as showing potential to drastically alter the habitats and cause lasting effects on the local biota1 (Bucher et al. 1993, Dolabella 2000).

At a global scale, in the different migrational routes known to water and shorebirds in general, between 33% and 68% of the populations, of the 511 populations of 214 species, are declining, when compared with only 0%-20% of increase. The reasons for this decline are many, but are related in its majority, to the loss of habitat and degradation (Stroud et al. 2006).

In this biome there are inumerous species of water birds, including anatidae, ciconiiformes (i.e; herons, maguari stork,

1. Group of living things, flora and fauna that inhabit or used to inhabit a certain geological environment, such as sea biota, land biota.
wood stork, etc), larids2 and shorebirds3 as well as neotropical – which are distributed from the Caribbean to the south of the South American continent – such as the nearctic, species which have its reproductive areas in North America, from the Arctic to Mexico. The Pantanal is a renowned reproductive area, an important reproductive site of many bird species. However, little is known in relation to the migrational movement of nearctic species, which use the region for a certain period of the year or pass through it.

In South America, banding studies4 revealed movement from a series of water birds between the Pantanal and the wetlands of the lower part of the Parana River, in the south of Brazil and Argentina (Antas 1994). However, the Pantanal can also provide essential habitats to migrants that are in transit between the northern and southern hemisphere, such as the nearctic shorebirds, some of which have their reproductive site in the north of North America, but spend the boreal winter south of the Pantanal (Morrison and Ross 1989).

Although its potential importance to these groups has been recognized (Antas 1983, Scott and Carbonnel 1986, Bucher \textit{et al.} 1993), there is need for documentation in relation to the distribution standards, be it at a temporal or seasonal scale, as well as the use of habitats, among other relevant aspects from the perspective of its preservation.

Knowing these parameters is a key element for preservation and necessary to several ends, such as planning Conservation Units, designing management plans for various species, ecological

2 Gulls, terns.

3 Species that live in muddy soil, on the coast, be it with fresh or saline water.

4 Technique that uses metal rings to tag birds.
tourism, management of fishing resources and hunting activity, improvement of industrial activities, etc. In this sense, this work has as its objectives:

1. determine the number and distribution of nearctic and neotropical shorebirds during the southward migration period;
2. determine the number and distribution of neotropical water birds;
3. identify key-regions used by water birds, with emphasis on shorebirds; and
4. investigate the use of the habitat by both groups.
METHODS

Routes flown over

a) For the biggest part of the Pantanal, a stratified approach for the effective coverage of the main water habitats was employed, involving flight routes that covered the wetlands associated to the main rivers, lagoons and lakes, as well as other type of open wet areas or floodable grasslands dominated by graminoid, which are used by water birds.

A systematic survey approach by quadrants was not used, as extensive areas in the Pantanal do not have water habitats. The month of October was selected, so as to coincide with the lowest level of water in the best part of the planes, mirroring the smallest seasonal availability of water environments, except for the region from Nabileque until Murtinho Port.

b) In the Bay and Salt Bed regions, in the center of the Pantanal, linear transects were flown over to estimate the number of birds using the lagoons, as well as the land habitat between them.

The survey was conducted using a Cessna 206 aircraft, which flew between 40 and 120m of altitude at an approximate speed of 220 km/h. The positions and flight routes were determined with the assistance of a GPS (Global Positioning System). Two
observers recorded the birds seen on each side of the aircraft with the assistance of a tape recorder.

The observations were made within a strip with 150m of width each side of the aircraft; observation of rare species or notable concentration of birds outside of the transect belt were recorded separately. The sample totaled 38.4 hours of flight, distributed throughout seven days, covering an estimate of 4.944 km, and flight lines divided in 75 sectors and 18 analysis regions (see below). In the region of the lagoons, the width of the transect (150m each side) was kept, but the flight routes were adjusted to include all the salty bays that occurred in an estimated area of 3-5km of width; for each lagoon, a way point number and a coordinate were recorded with the assistance of the GPS and all birds were counted.

The fly overs were carried out from the 8th to the 14th of October 1996, leaving from Cuiabá; the northern region was surveyed between the 8th and 10th of October, based in Cáceres and the central and southern regions, from the 11th to the 14th of October, based in Corumbá. In general, the atmospheric conditions showed to be good for the surveys, with sunny or cloudy days and moderate wind; only one afternoon was lost due to rain and thunder.

The temperatures reached an average of 30°C at the beginning of the period, dropping to 18°C due to a cold front during the surveying of the Pantanal’s southern region.

The species’ common names were used, based on their name in Portuguese and followed the Brazilian Ornithological Records Committee’s list (CBRO 2008), regional names are also used, when known. In English, they follow the American Ornithologist Union List (AOU 1998).
Data analysis

The Pantanal was divided in 18 regions (see Figure 1) with the purpose of comparing the distribution of the birds and identifying the key-areas. The delimitation of such was based on geographic and/or ecological criteria, considering the drainage of the main Rivers (i.e; Jaurú and Lower Cuiabá River) or regions with unique ecological characteristics (i.e; Bays and Salt Beds, areas of the fresh and salty water lagoons in the Pantanal’s central region). The names and relation with subregions previously described are presented below. (see Description of Habitat).

The number of birds was determined through direct counting, when the flocks were small, or through visual estimate, when there were big concentrations. The identifications were made at the species level whenever possible; when it was not possible due to similarity among the species, bad visibility conditions and/or size and diversity of flocks, the birds were assigned to a bigger cluster, based on corporal size or on a group of similar species (i.e; small sandpipers, herons, ducks, etc.).

Soil checks to determine the precision of the count, were not done as it was impossible reaching many of the areas where a big number of birds were found. However, the number obtained with the aerial survey may be considered subestimates of the real number of birds that may be found in the area under study.

Total bird counts were generated for each sector in the following way: the counts carried out by the two observers on each side of the aircraft were compared and the highest values were selected for each species or group. The differences in the counts may be the result of temporary involvement by one of the observers, in navigation and photography activities or equipment checks. The totals for both sides of the aircraft were then
added. The numbers on the tables (Appendix 1) represent the data obtained in the field, which may have been rounded up in the text whenever appropriate.

The length of the transects for each sector were measured with an aeronautical chart in the scale of 1:1.000.000 and the linear density of the birds was calculated by dividing the number of individuals by the sector’s length. The statistic comparisons of the distribution and the use of the habitat followed Morrison et al. (1997). The mapping was done using the MapInfo software using a scale of 1:1.000.000 for MapInfo’s digital charts (ADC 1993).

The statistical analyses were done using the Statística software. The densities per sector were used to illustrate the distribution of birds in the maps. The regional distribution and habitat graphs together with the shorebird species texts, use acronyms described in the Description of habitats session (for the habitats) and in Figure 1 (for the regions).

Area of study

The *Pantanal*, considered one of the biggest swamp complexes in the World (Alho *et al.* 1988, Por 1995, Swarts 2000), is located in South America and is formed by the drainage area of the high Paraguay river and its tributaries. Estimates of its size vary between 140.000 and 200.000 km² (OEA 1971, Tricart and Frecaut 1983), of which, approximately 138.200 km² are in Brazilian territory (Francischini 1996), while, 12.350 km² are in Bolivia and 4.000 km² in Paraguay (Scott and Carbonell 1986). It is considerably bigger than many small European countries, being similar to the area of Suriname or Guyana in the north of South America or the Maritime Provinces (New Brunswick, Nova Scotia and Prince Edward Island) in the east of Canada.
Geologically, the Pantanal is an immense alluvial plane, with approximately 65 million years of existence (UNDP 1973, Tricart 1982). The area is extremely flat, with altitudes between 80 and 150m and gradients varying from 0.7-5 cm/km in the north-south direction and 5-50cm in the east-west direction (UNDP 1973, Francischini 1996). It is surrounded by a crystalline plateau with 600-700 m of altitude (Filho 1986) and the drainage canal is restricted to a narrow strip of approximately 50km of width between Corumbá/Ladario and Bodoquena mountain (Antas 1983).

The average annual precipitation varies between 1.100 and 1.200mm, with approximately 45% of the total concentrated between December and February – the rainy season, which takes place from November to March. This concentration results in extensive flooding, as the quantity of water this area receives during this period, exceeds the volume able to leave through the draining canals (and evaporation). Many areas close to the big rivers are completely flooded, before the water levels drop in the second half of the year.

Considerable variation may occur from year to year, depending on precipitation, in such a way that the extension of flooded areas may vary up to five times (Bucher et al. 1993). It is this unique combination of geology, morphology and hydrology that contribute to the wealth and variety of the ecosystems in the Pantanal, which include various types of permanent and temporary flooded areas, as well as localized forests and cerrados on higher ground.

As expected, in such an extensive area, there is considerable variation of the types of wetlands and landscape that can be found in the regions of the Pantanal. The main flooded or wet areas are
found in the central part along the main rivers, with forest areas occupying higher parts of the ground (PCBAP 1997).

Approximately 10 to 11 regions have already been described for the Pantanal (Por 1995, Francischini 1996, PCBAP 1997). In general, the main factors that determine vegetational variation are the soil’s moisture and its topography, in such a way that in very flat regions, small variations in the ground’s elevation result in abrupt alterations to the habitat (Eiten 1975).

On the whole, trees are capable of tolerating areas that are permanently flooded and areas that are constantly moist/dry, but not alternations between extreme saturated and dessicated conditions (Cole 1960). Therefore, dense forest areas are generally found alongside rivers, the so called gallery forests, or in higher lands, where a type of semidecidual forest can be found.

In the intermediate parts, subject to periodical flooding, a more open type of vegetation develops. In these, a succession of vegetation (of cerrado) may be seen, going from an open and dry grassland (clean field), to grasslands with scattered trees and shrubs (dirty field), areas with growing coverage of trees and a decreasing proportion of grasses – closed field (campo/cerrado), cerrado, cerradão (augmentative of cerrado), up to a dense forest that represents the climax of the savannah and takes place at the top of the mountain ranges (Goodland 1971, Eiten 1983, Coutinho 1990).

Sandy soil is predominant in the Pantanal’s central region, surrounding the alluvial plane of the Taquari River, in the Paraguay/Coricha Grande/Nabileque area (Amaral Filho 1986); these areas tend to be relatively dry, hosting extensive areas of cerrados and fields. Soils with average granulometry characterize the area of Cuiabá-São Lourenço, in the north, where extensive flooded
areas and cerrados can be found. Fine and clay soils are found in the surroundings of the Paraguay River and in the systems further south (Miranda, Aquidauana, Apa and Nabileque), hosting a semi-arid herbaceous vegetation (see Amaral Filho 1986, Ponce 1995, Por 1995).

Of particular interest, as shown by the present study, is the area with fresh and salty water bays found in the central-south of the Pantanal, in the Nhecolândia region. This unique region is a little more elevated than its surroundings, being characterized by localized moderate floods of short duration, as well as the predominance of savannah vegetation (Adamoli, in Por 1995). Fresh and salty water bays are close to one another: the first are generally drained and/or connected to the water courses, while the salty bays do not suffer drainage and are often semi-surrounded by a forest located on higher sandy ground, known as mountain range. The salty bays fill up during the rainy season and dry up in the dry season, leaving the river banks muddy, which are used by shorebirds and others. The fresh water bays present a variety of vegetational species and are sometimes completely overrun by them, while the salty bays generally do not have vegetation.

Although the great variability of the water level, climate and prominence result in low levels of endemism (Brown 1986), the vast wet habitats found offer resources to a high number of water birds and the area provides support to the main reproductive colonies of various species of piscivorous birds, fish eating birds, in South America (Antas 1994). Several authors recognize its important potential as a stopover point for North American migrants and from other parts of South America (Antas 1983, 1994, Brown 1986, Cintra and Yamashita 1990). The description of avifauna

Descriptions of habitat
Simple qualitative descriptions of habitat were made for each surveyed sector based on the characteristics of the relevant landscape for water birds, such as the presence of marshes with graminoid, height of the graminoid stratum (long, short), the presence of water bodies with muddy banks, vegetation with shrubs or trees, the type of forest, the characteristics of lagoons (fresh, salty water, the presence of muddy river banks) etc.

The predominant habitat for each sector was used as the determinant habitat for that sector. The habitat categories were selected to reflect the general structure of the landscape/vegetation, to which it is assumed the birds respond to (Knopf et al. 1990). The 10 habitat categories adopted in the present study are intimately related to the habitats and relations/successions of habitats described by Coutinho (1990) and others (see Por 1995, and Area of study above), and these relations are indicated below.
The fresh and salty water lagoons (regionally called the bays) which occur in the central-south part of the Pantanal (BASA region in Nhecolândia) make up a characteristic type of landscape found only in this region. The fresh water bays are small depressions that vary in round and oval shapes and occur isolated or in groups, having water vegetation. They are almost totally delimited by forests, known as mountain ranges.

The salty water bays differ from these because they are surrounded by mountain ranges and water surfaces, without water vegetation and drainage canals. The color of the water may vary from light brown to green or black, according to the concentration of predominant salts. After the rainy season, the beds are usually full, but in October the water level of the majority of rivers has already gone down, showing muddy banks (or mucky), surrounding a central part of water or wet mud. These habitats are broadly used by nearctic and neotropical shorebirds.

In contrast, the fresh water bays have abundant water vegetation: some are covered by water hyacinth or soft rush, others have dense growing of graminoid; some are almost totally covered by plants, while others do not present vegetation in the central part. Contrary to the salty bays, the fresh water bays are connected to drainage canals or water courses. Among the lagoons, there is mainly herbaceous vegetation, with some patches of shrubs and trees; many fresh water depressions occur, some resembling miniature bays.
2 **FGSW**
(FOREST-GRASSLAND-SCRUB-WET)
Parts of the land covered mainly by forests, with small areas with graminoid and shrubs; generally wet.

3 **GLOM**
(GRASSLAND-LONG-OPEN-SOME MUD)
Open areas with long graminoid and water bodies with muddy banks. Equivalent to field, mainly open, where shrubs and trees are usually not found. The presence of water bodies with muddy banks makes up an adequate habitat for nearctic shorebirds.

4 **GLOW**
(GRASSLAND-LONG-OPEN-BY WATER)
Areas covered by long graminoid and some shrubs near the water (i.e; grasslands around the Uberaba Bay); water bodies with vegetation up to the bank; these are not muddy.

5 **GLSF**
(GRASSLAND-LONG-SCRUB-FOREST)
Open floodable areas, interspersed with shrubs and forests, with wet and dry areas.

6 **GLSFD**
(GRASSLAND-SHORT-SCRUB-FOREST-DRY)
Open terrain mainly covered by short graminoid, interspersed with isolated shrubs and forests, basically not floodable.
7 **GLSFW**
(GRASSLAND-LONG-SCRUB-FOREST-WET)
Marshy areas covered with long graminoid, between which, isolated shrubs and forests can be found with water bodies, with vegetation up to the banks. Equivalent to the *cerrado*/closed field.

8 **GSSF**
(GRASSLAND-SHORT-SCRUB-FOREST)
A very distinctive type of habitat consisting of extensive areas covered by short graminoid used for cattle grazing. Isolated shrubs and forests occur in these areas’ surroundings, giving them the appearance of a golf course. This type of habitat is mainly found in *Nhecolândia*. It is equivalent to dirty field/closed field.

9 **RIWE**
(RIVER-WETLANDS)
Complex wet, marshy habitats directly associated with the main rivers; generally composed of open areas, although with the presence of isolated shrubs and forests. The majority of the marshy areas are occupied by long graminoid. Small lagoons or water bodies usually have vegetation up to their banks, without muddy substratum. This habitat is equivalent to the *cerrado*, with areas of gallery forest alongside the rivers.

10 **RIWF**
(RIVER WETLANDS-WET-FOREST)
Wet areas directly associated to the course of the main rivers, consisting of densely forested patches, although some open areas may also occur. Equivalent to the *cerradão* or to the gallery forests alongside the course of the rivers.
The Southern Lapwing is a neotropical species resident of the Pantanal (Brown 1986). It is widely spread in South America and one of the most popular birds. It is considered to be sedentary, with limited post-breeding dispersal, though some southern populations may move to less cold areas during the austral winter. Outside of the reproductive period, it occurs in small groups. Four subspecies are recognized, with the Pantanal’s population probably belonging to the \textit{V. c. lampronotus} (Piersma and Wiersma 1996).

This species was observed in relative small numbers (total of 550 or 3.5\% of the total of the neotropical shorebird species). They were widely distributed 16 of the 18 surveyed areas, although more common in the Pantanal’s central region (BASA, NHEC,
JACA, NEGR), along the lower Cuiaba River (BACU), and in the north (CACE, CUIA). The species was observed in 9 of the 10 surveyed habitats, though more common in open grassy areas in the region of the lagoons (BASA), in marshy areas with muddy water bodies (GLOM) and in areas with short graminoid and in the surroundings of the Nhecolândia region (GSSF). Smaller densities were observed in wet areas next to the rivers (RIWE, RIWF) and in marshy areas with shrubs and forests (GLSFW).
As it reproduces in most parts of the Arctic, it is believed that it migrates to its wintering grounds, in central South America, following an elliptical pattern, i.e.; it goes south, crossing the Atlantic Ocean from East Coast of North America and returning through the inland of the United States and Canada (Piersma and Wiersma 1996). Many of them occupy inland rural areas, extending from the north to the south of the Pantanal, and we can expect them to occur there as a migrant as well as a potential resident during the austral winter.

It was the third among the nearctic shorebird species in number of recorded individuals (total 583 or 10.3% of the total). It represents a significant number of the non-identified medium sized shorebirds (which totaled 2.167 or 38.4% of the total of
the nearctic shorebirds). It was observed almost exclusively (580 of the 583) in salty water bays (BASA) and in the Negro River region (BASA, NEGR), with only three individuals being recorded in other places in the region of the Lower Cuiabá River (BACU), in dry shrubby savannah with long graminoid (GLSFD).
This is a neotropical species and considered to be sedentary, although with local or long distance movements, the patterns of which are still little known. They migrate between July and November, returning in March-May (Piersma et al. 1996).

It was the most numerous shorebird species in the survey, representing 70.7% (15,579) of the total observed (22,046) and 95.0% of the total of neotropical shorebirds (16,402). Widely spread (8/10 habitat categories and 10/18 regions) in the habitat of the salty water bays (BASA, 94.9% of the total) in the Pantanal’s central region (BASA, 83.0% of the total) and in the Negro River region (NEGR, 12.2% of the total). Other important habitats include muddy areas often associated with marshes (GLOM, 3.4% of the total), such as those that occur in Sinhá Mariana near Barão.
de Melgaço, in the regions of Cuiabá (CUIA, 2.0% of the total) and Lower Cuiabá River (BACU, 1.6% of the total). Water bodies located between marshy areas covered with short graminoid (GSSF, 0.8% of the total) and in the Nhecolândia region (NHEC, 1.0% of the total) also sheltered smaller numbers.

Possibly over 100.000 stilts inhabit the Pantanal, as just the extrapolation of the numbers obtained for the region’s salty bays suggest that between 90.000 and 100.000 stilts may use these environments.
It is a species resident in the Pantanal and the only of its type found in South America. Piersma et al. (1996) suggests it is very sedentary.

It was observed in relative low numbers (173 or 1.8% of the 15,579 neotropical shorebirds), but in practically every survey, being found in 14 of the 18 surveyed regions. It showed to be more common in the central areas (PAIA, BASA, JACA, NABI), in the Lower Cuiabá River (BACU) and Paraguay River (PARA), in the Corixo Grande (COGR), near the Border with Bolivia and in the wetlands of the Cáceres region (CACE). It also occurs in a great variety of habitats, occupying nine of the ten considered classes. It was only not found in the densely forested wet areas.
alongside the rivers. It showed to be uncommon in areas covered by short graminoid in the Nhecolândia region. The highest densities were observed in the marshy areas with long graminoid in the fresh water bays and in the the region of the bays and salt beds (BASA).
Tringa melanoleuca and T. flavipes
Greater Yellowlegs and Lesser Yellowlegs

Tringa melanoleuca and T. flavipes reproduce in the Arctic, in Alaska, east of Canada, migrating through James Bay, British Columbia, Mexico, Central and South America until the Tierra del Fogo (Piersma et al. 1996). They occur in the Pantanal during southward migration, however, northward migration has been little documented and the used strategies are not yet known. During the census, it was not always possible to distinguish between them and thus the numbers presented are the combined total of both species, the aerial and land observation indicate that the lesser yellowlegs represent the majority of birds spotted.
Together they represent the most common nearctic taxon\(^5\) during the surveys (N=1784), as well as wide spread, being found in all habitat categories and in 14 of the 18 regions. The biggest concentrations were found in the Bays and Salt Beds regions (BASA) and Nhecolândia (NHEC), which shelter 88% of the total. Other key-habitats included marshy areas with long graminoid and muddy water bodies (GLOM, 4.0%) and water bodies that occur in habitats with short graminoid (GSSF, 2.9%), mainly in the regions of the Lower Cuiabá River (3.8%) and Nhecolândia (3.6%), respectively.

\(^{5}\) INSERT FOOTNOTE
Bartramia longicauda
Upland Sandpiper

It builds its nests and reproduces in North America, in the south-east of Alaska, in the central prairies of the United States and Canada, where it is more numerous, until the east of the continent. After breeding, it migrates through the central areas of North America in the direction of the rural ecosystems on central and eastern South America.

During the boreal winter it is seen in Suriname, Paraguay, south-east of Brazil, Uruguay and Argentina (Piersma et al. 1996). It prefers habitats with graminoids, such as prairies, pasture land, cultivated and natural fields, pampas and even golf courses and aircraft runways. It occurs in the Pantanal as a migrant and, possibly, also as a winter resident.
During the surveys, 202 were counted (3.6% of the nearctic shorebirds, which totaled 5,644). The species showed to be associated to open habitats with short graminoid (GSSF), with 123 of the 202 birds found in the habitats in the Nhecolândia region (NHEC). The rest were observed in similar habitats close to the Bays and Salt Beds (BASA) and the fresh water Negro (NEGR).
It is distributed from the Taymyr Peninsula, in Siberia, Alaska and all the Canadian Arctic regions, to the West of Hudson Bay. After reproduction, it migrates via the Atlantic and Pacific Coast to wintering grounds in South America, from the south of Bolivia, Paraguay until Argentina (Piersma et al. 1996).

Migration appears to be elliptical, in a southward direction over the west of the Atlantic Ocean and returning through the central parts of North America. As the wintering grounds extend themselves throughout the whole of the Pantanal and south of this region, it can also be occasionally present in the austral winter.

It was the second most numerous nearctic shorebird species (720, or 12.8% of the total of the nearctic shorebirds) and it seems to have represented an important part of the non-identified
medium sized nearctic shorebirds (which added up to 2.167 or 38.4% of the total of the nearctic shorebirds). It was only spotted in the Bays and Salt Beds region (BASA) and in the adjacent region of the Negro River (NEGR), where it was confined to the salty water bays habitat (BASA) (719 of the 720), with only one bird being recorded in the wet savannah/cerrado with long graminoid (GLSFW).
After reproduction in the center and north-west of the North American Arctic, it migrates from the end of July to mid September to its wintering grounds in the Southern Hemisphere, mainly situated in the Uruguayan and Argentinian pampas. In general, it follows a route with no stopovers through the inland of North America, Canadian coastal provinces, crossing the Gulf of Mexico, until it reaches the north of South America. It flies through the continent’s inland, with wintering grounds in the south-east of Bolivia, Paraguay, south of Brazil and north of Argentina. It prefers open habitats with short graminoid (Piersma et al. 1996).

They were seen in modest numbers (80 in total, or 1.4% of the 5,644 nearctic shorebirds) in the aerial surveys and had a
very restrictive distribution. They were only found in the Bays and Salt Beds region (BASA) and *Nhecolândia* (NHEC), and in only 2 of the 10 habitat categories, salty water lagoons (BASA) and fields with low graminoid (field) in *Nhecolândia* (GSSF). Rural áreas which surround many fresh water bays make these regions particularly adequate to this species.
Other species of nearctic shorebirds

Five other species of nearctic shorebirds were seen in small number during the flights. The results are presented below
The spotted-sandpiper (total of 15) was widely distributed in small numbers, through all of the Pantanal (nine of the eighteen surveyed regions and six of the ten habitats). Where it was found, it was mainly associated to big rivers and central and northern parts.
Only four solitary sandpipers were spotted from the aircraft: two in the Piquiri River, one in the Jauru River and one in the Bays and Salt Beds area.
Nine *Limosa haemastica* were recorded in the central-south of the Pantanal: two in the Nhecolândia region and seven in the Bays and Salt Beds.
Arenaria interpres
Ruddy Turnstone

Two were spotted in the Bays and Salt Beds region (BASA).
Numenius phaeopus

Whimbrel

A group of 29 were recorded in the Bays and Salt Beds area.
Neotropical species

For neotropical species, maps and short notes are presented to illustrate their distribution in the Pantanal.
The biggest number was found in the central part of the Pantanal, in the Nhecolândia region. The majority of the birds occupied habitats with short graminoid, shrubs and forests (GSSF). (N=20).
Distributed along the courses of the great rivers, with the highest numbers and densities recorded in the Lower Cuiabá River (BACU). \((N=7.665)\) = number observed.
Widely distributed in the *Pantanal*. Mainly found in marshy environments with long graminoid and wetlands along the river. (*N*=141).
Ardea coccoi
White-necked Heron

Widely distributed in the Pantanal, in particular alongside the main rivers; less common in the fresh and salty water bays in the central region. Found in marshy lands with long graminoid. (N=2.196).
Ardea alba
Great Egret

Numerous and widely distributed in the Pantanal in marshy habitats; less common in forest habitats or fresh and salty water bays. (N=12.715).
Widely distributed, with highest numbers/densities in the Cui-abá and Negro River regions. Found mainly in marshy habitats with long graminoid. \(N=3.254\).
Moderate widespread distribution, with elevated densities in the Cuiabá region and in the central part of the Pantanal. The highest densities were recorded in the bays and salt bed habitats; other favored habitats included marshy lands with long graminoid and water bodies with muddy banks, as well as marshy lands with shrubs and forests. \((N=3.597) \).
Relatively well distributed, but not abundant. The densities tended to be higher between Cáceres and Paiaguás. Less frequent in the Pantanal’s central region (BASA region and habitat). (N=62).
Mycteria americana
Wood Stork

Numerous, with higher concentrations in the central region (NHEC, BASA, NEGR e MIAQ) and between Poconé/Cáceres (POCO and CACE regions). Most used habitats were those with long graminoid, shrubs and forests. \((N=10.728)\).
CICONIIDAE

Euxenura maguari
Maguari Stork

Mainly concentrated along the wetlands of the Paraguay River and the Negro River regions, where there were marshy lands with long graminoid. \((N=1.291)\).
It is the biggest of the ciconiids to inhabit the Pantanal, nests in all its area and was adopted as a symbol of the region. It is seasonally present in the Pantanal, from April to December. Tracking studies carried out with satellites showed wide movement in the plane’s inland, without there being a seasonal pattern (Antas and Nascimento, 1996).

A total of 6,790 jabirus were counted during the flights. The species showed wide distribution, occurring in 17 of the 18 surveyed regions; the only region where it was not found was in the High Taquari River (ALTA). It was most numerous in Miranda-Aquidauana (1,619, MIAQ) and Cuiabá (1,604, CUIA). Higher densities suggest two main concentration areas: one in the
northern regions of Cuiabá-Poconé-Cáceres (CUIA, POCO, CACE) and the second, in the central-south regions, involving the regions of Nhecolândia, the Bays and Salt Beds, and the Negro and Miranda/Aquidauna (NHEC, BASA, NEGR, MIAQ). The densities were lower along the main canal of the Paraguay River and in the higher stretches of its tributaries. The species was observed in all habitat categories, with higher densities in the closed field type vegetation, which consists of long graminoid, with shrubs and forests.
Threskiornithidae

Theristicus caudatus

Buff-necked Ibis

Small numbers observed, especially in the Pantanal’s central region (NHEC, NEGR, MIAQ regions). \((N=61)\).
Observed regularly, especially in the Pantanal’s central region and in the Lower Cuiabá River \((N=982)\).
Platalea ajaja
Roseate Spoonbill

Seen in the whole of the Pantanal, with higher concentrations in the central regions. Found in the majority of habitats, except forests. (N=2.163).
Moderately common, found in higher numbers in open areas next to the Cuiabá River and Nhecolândia. (N=458).
More common in the Pantanal’s central region, with elevated densities in the region of Nhecolândia, in the bays and salt beds and in the Lower Cuiabá River (BACU). The highest densities were observed in the Bays and Salt Bed habitats. \(N=3.079\).
More common in the south and center of the Pantanal, with significant numbers in the bays and salt beds (BASA), as well as in the wetlands by the riverside. (RIWE). (N=3.485).
Small numbers were observed in the Pantanal’s central region (BASA and NHEC regions) and in the region of the Lower Cuiabá River. (N=38).
Cairina moschata
Muskovy Duck

Occurs alongside the Rivers and wetlands of the Lower Cuiabá River and in the Pantanal’s central region, in a great variety of habitats. \(N=240\).
Coscoroba Swans were found in some bays that occur in the Pantanal’s central region, west of Fazenda Firme/Nhecolândia, with the biggest group consisting of 14 birds. This species had not been recorded in the region previously. \((N=49)\).
Observed alongside the courses of the main Rivers, usually close to marshes with long graminoid and some forest. (N=103).
Small numbers were recorded in all of the Pantanal, always close to the courses of the main rivers. (N=13).
Aramus guarauna
Limpkin

Observed in small numbers in many parts of the Pantanal, mainly in areas with long graminoid with some shrubs and forests (GLSFW). The highest quantities were recorded in the regions of Cuiabá and Jacadigo.
Observed in small numbers alongside the rivers, more common in the Pantanal’s central region. The only sectors in which they were not found were those dominated by bays and salt beds. (N=211).
Regularly observed, mainly on the sand dunes of the river-side systems, more common in the Pantanal’s central region (N=1.461).
Rhynchos nigra
Black Skimmer

More common in the center and south of the Pantanal, along Rivers and lagoons. \((N=1.249)\).
The aerial surveys revealed clearly that the nearctic and neotropical species of shorebirds concentrate at a high degree in the fresh and salty water bays that occur in the Pantanal’s central region.

A small number used the fresh water habitats and concentrations of shorebirds occurred in few other locations. Moderate numbers were found in Sinhá Mariana, near Barão de Melgaço, where there are several lagoons very similar to the fresh water ones found in the central region. Small concentrations were also found at a limited number of locations, where water bodies with muddy banks occur in extensive marshy areas (i.e; the southeast of Jofre Port). Such places are relatively uncommon – the majority of small bays and water bodies found in the Pantanal have densely vegetated banks with little or no clay substratum.

Another particular habitat used by a more restrictive group of shorebirds, which favored higher rural habitats, were pasture lands with short graminoid, characteristic of the Nhecolândia region. These types of habitats do not seem to be widely distributed and were mainly used by Bartramia longicauda, as well as Tringites subruficollis.
Several statistical analyses (Morrison et al. 1997) support the conclusion that shorebirds had a different distribution from the other water bird groups in the habitats found in the Pantanal. Non-parametric analyses showed that densities were significantly higher in the regions of the salty water bays than in any other part of the Pantanal. Cluster and principal component analyses revealed that nearctic shorebirds make up a distinct group from other species, compatible in the use of muddy and salty habitats found in the central region. On the other hand, the cluster analysis, based on the composition of birds from the different surveyed sectors, revealed that groups from sectors composed of bays and salt beds make up an isolated group from the other wet environments in the Pantanal. Regional analyses showed that shorebirds occur in densities significantly superior in specific regions of the Pantanal, where they can find their favorite habitats. Although these regions are represented by geographic areas related to drainage canals, they have a distinct geomorphological composition (Silva 1986).

The results of the flights suggest that conservation measures for nearctic shorebirds as a whole, should be different from the one being applied to other bird groups with wider distribution in the Pantanal. The salty water bays that occur in the central region do not seem to be regularly flooded during the seasonal floods, which affect many other regions of the Pantanal, because they are surrounded by higher ground areas than the ones found alongside the courses of the main rivers, such as the Paraguay.

The lagoons, in their turn, fill up with rain water and thus, are much more isolated than the habitats that are flooded during the inundation period. If these lagoons are connected through the flow of underground water is still a matter for debate (Leão 1996).
However, the relative proximity between them suggests that the conditions of a determined lagoon depend on the local soil’s chemical conditions and the river bed’s characteristics. The coloring of the water in different lagoons varied considerably during the fly overs conducted in May 1997 and October 1998 (data not published), going from coffee-brown to black, going through green. While the majority of the lagoons was totally full in May 1997, the water levels in October 1996 varied considerably, with an estimated water coverage in the different basins, varying between almost empty to 80% full.

No drainage canal or stream was apparent in the lagoons and the loss of water seems to be the result of mainly evaporation or maybe movement through the soil. These observations suggest that very distinctive conditions develop in different lagoons, depending on the salinity, temperature and local nutrients.

The differences resulting in productivity, would also lead to a variety of food resources of potential use by shorebirds and other animals. Salty water bays, for example, are important breeding grounds for caymans (Emiko Kawakami de Resende, com. Pess).6

Estimates of the number of lagoons in the regions of the Bays and Salt beds, calculated from the transects (densities), vary between approximately 280 and 480, depending on the effective transect width applied. (Morrison et al. 1997).

Although the water regime of the salty and fresh water bays in the central region may not be directly related to seasonal flooding patterns, as in the fresh water habitats located next to the drainage canals of the main rivers, this does not necessarily

6. Personal communication of the researcher.
mean that the lagoons are not affected by the changes in water regimes that result from the large scale alterations in the Pantanal’s water dynamics – such as those that may result from the implementation of the proposed Waterway.

Hypothetically speaking, changes to the main rivers’ hydrology may affect the conditions in the areas of the fresh and salty water bays through the alterations of the water table levels and/or climate patterns. Therefore, it is evident that more studies about the ecology of these bays, in the central region of the Pantanal, are needed to understand how these important ecosystems work (Ferreira et al. 1996). Such knowledge is essential to design more appropriate approaches to preserve the resources provided by these unique and notable ecosystems.

The results presented here suggest that the number of nearctic shorebirds using the Pantanal is of great importance when compared to other inland locations of South America.

Although the numbers presented are not as big as the ones found in the coastline, which support a great a number of migratory shorebirds in South America (Spaans 1978, Harrington et al. 1986, Morrison and Ross 1989, Vooren and Chiaradia 1990), the numbers as well as the diversity of the species, are considerably higher than the majority of other inland locations, where studies were conducted during the migration and winter periods.

Even if the species that occur in Asuncion Bay and other areas of Paraguay are very similar to those found in the Pantanal, for example, the quantities there are much smaller (Hayes et al. 1990, Hayes and Fox 1991). Similar considerations may be applied to inland sites studied in Venezuela and the Peruvian Amazon (Thomas 1987, Bolster and Robinson 1990), as well as in Argentina (Myers and Myers 1979).
Surveys exclusively conducted in the region of salty water bays indicated that over 100,000 shorebirds were present in the region in October 1996. They reveal, from the shorebird’s perspective, that many areas in the Pantanal meet the criteria used by Conservation Initiatives at a global scale, such as the KBAs (Key Biodiversity Areas) in Europe and Africa, for the identification and recognition of key conservation areas (Eken et al. 2004), in particular, gregarious species, or IBAS (Important Bird Areas), in the United States and Canada (Bennun et al. 2005). They also meet criteria established by the Ramsar Convention, for the designation of water environments of international importance, of which the country has been a signatory since 1993.

The salty water bays in the central region of Nhecolândia could be recognized as an International Reserve under the Western Hemisphere Shorebird Reserve Network (WHSRN) system (see Morrison et al. 1995).

The region still needs to be designated as protected areas under the National Conservation Unit System, although its wealth and potentialities have been recognized nationally and internationally. To ensure that its sustainable development and ecological integrity walk hand in hand are challenges for the future and should be part of any management proposal or strategy for this very important Human Heritage site.

Without the adoption of measures that protect the biome’s biodiversity, its continuity will remain uncertain.
ACKNOWLEDGEMENTS

We would like to express our special acknowledgment and recognition to Steven Price, Vice-President of WWF/Canada, for the key role he played in making this project possible and for his forward thinking in identifying the practical importance of the project.

A special thanks also goes out to André Leite, WWF/Canada, who followed us in the field, ensuring the success of our work. Richard Guy Morrison and R. Ken Ross thank their colleagues at the Canadian Wildlife Service (CWS) for supporting their decision to get involved in the project, in particular Peter Blancher, at the CWS National Wildlife Research Center, and Rick Pratt, at the CWS Ontario Region. Our special thanks to Albano Schulz, at CEMAVE/IBAMA, for the support given to the project and CNPq, for the scientific authorization to perform such a study.

This work was made possible through the financial assistance of the Inter-American Development Bank.

Bolster, D.C. e Robinson, S.K. 1990. Habitat use and relative abun-

– aspectos relacionados às aves aquáticas e áreas de reprodução colonial. II Simpósio sobre Recursos Naturais e Sócio-econômi-

Estação Ecológica Nhumirim e Adjacências. Comunicado Técnico

12, Embrapa, Corumbá, 16 p.

coast of South America. Canadian Wildlife Service Special Publi-

Morrison, R.I.G., Butler, R.W., Beyersbergen, G.W., Dickson, H.L.,

Bourget, A., Hicklin, P.W., Goosen, J.P., Ross, R.K. e Gratto-Trev-

or, C.L. 1995. Potential Western Hemisphere Shorebird Reserve

Network sites for migrant shorebirds in Canada. Canadian Wildlife

1997. The distribution and abundance of Nearctic and Neotropical

shorebirds and other waterbirds in the Pantanal, Brasil, in October

Myers, J.P. e Myers, L.P. 1979. Shorebirds of coastal Buenos Aires

OEA. 1971. Cuenca del rio de La Plata. Estudio para su planificacion

y desarrollo. Inventario y analysis de la información basica sobre

PCBAP. 1997. Plano de Conservação da Bacia do Alto Paraguai, Pro-

grama Nacional do Meio Ambiente. PNMA, Brasília.

Piersma, T., Gils, J. e Wiersma, P. 1996. Family Scolopacidae (sand-

pipers, snipes and phalaropes). In: del Hoyo, J. Elliott, A. & Sarga-

Barcelona, Lynx Editions.

APENDIX

Total of birds counted during the aerial surveys of the Pantanal in October 1996
See Figure 1 for regions’ acronyms

Acronyms for the name of species found on Table 1

SOLA Southern Lapwing,
AGPL American Golden-Plover,
BNST Black-necked Stilt,
WAJA Wattled Jacana,
YELL yellowlegs species (Greater e Lesser yellowlegs),
SOSA Solitary Sandpiper,
SPSA Spotted Sandpiper,
UPSA Upland Sandpiper,
WHIM Whimbrel,
HUGO Hudsonian Godwit,
RUTU Ruddy Turnstone,
PESA Pectoral Sandpiper,
BBSA Buff-breasted Sandpiper,
MESB medium-sized shorebirds (aves limícolas de médio porte),
SMSB small shorebirds (aves limícolas de pequeno porte);
Table 2:

<table>
<thead>
<tr>
<th>Code</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRRH</td>
<td>Greater Rhea,</td>
</tr>
<tr>
<td>OLCO</td>
<td>Olivaceous Cormorant,</td>
</tr>
<tr>
<td>ANHI</td>
<td>Anhinga,</td>
</tr>
<tr>
<td>WNHE</td>
<td>White-necked Heron,</td>
</tr>
<tr>
<td>GREG</td>
<td>Great Egret,</td>
</tr>
<tr>
<td>SNEG</td>
<td>Snowy Egret,</td>
</tr>
<tr>
<td>CAEG</td>
<td>Cattle Egret,</td>
</tr>
<tr>
<td>RTHE</td>
<td>Rufescent Tiger Heron,</td>
</tr>
<tr>
<td>WOST</td>
<td>Wood Stork,</td>
</tr>
<tr>
<td>MAST</td>
<td>Maguari Stork,</td>
</tr>
<tr>
<td>JAST</td>
<td>Jabiru Stork,</td>
</tr>
<tr>
<td>BNIB</td>
<td>Buff-necked Ibis,</td>
</tr>
<tr>
<td>BFIB</td>
<td>Bare-faced Ibis,</td>
</tr>
<tr>
<td>SPOO</td>
<td>Spoonbill,</td>
</tr>
<tr>
<td>SOSC</td>
<td>Southern Screamer,</td>
</tr>
<tr>
<td>WFWD</td>
<td>White-faced Whistling Duck,</td>
</tr>
<tr>
<td>BBWD</td>
<td>Black-bellied Whistling Duck,</td>
</tr>
<tr>
<td>BRDU</td>
<td>Brasilian Duck,</td>
</tr>
<tr>
<td>MUDU</td>
<td>Muskovy Duck,</td>
</tr>
<tr>
<td>COSW</td>
<td>Coscoroba Swan, SNKI Snail Kite,</td>
</tr>
<tr>
<td>OSPR</td>
<td>Osprey,</td>
</tr>
<tr>
<td>LIMP</td>
<td>Limpkin,</td>
</tr>
<tr>
<td>YBTE</td>
<td>Yellow-billed Tern,</td>
</tr>
<tr>
<td>LBTE</td>
<td>Large-billed Tern,</td>
</tr>
<tr>
<td>BLSK</td>
<td>Black Skimmer.</td>
</tr>
<tr>
<td>REGIONS</td>
<td>SOLA</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>1-PIIT</td>
<td>0</td>
</tr>
<tr>
<td>2-SALO</td>
<td>2</td>
</tr>
<tr>
<td>3-CUIA</td>
<td>80</td>
</tr>
<tr>
<td>4-POCO</td>
<td>4</td>
</tr>
<tr>
<td>5-CACE</td>
<td>43</td>
</tr>
<tr>
<td>6-JAUR</td>
<td>1</td>
</tr>
<tr>
<td>7-COGR</td>
<td>1</td>
</tr>
<tr>
<td>8-PARA</td>
<td>6</td>
</tr>
<tr>
<td>9-BACU</td>
<td>20</td>
</tr>
<tr>
<td>10-PAIA</td>
<td>16</td>
</tr>
<tr>
<td>11-ALTA</td>
<td>34</td>
</tr>
<tr>
<td>12-NHEC</td>
<td>89</td>
</tr>
<tr>
<td>13-BASA</td>
<td>165</td>
</tr>
<tr>
<td>14-NEGR</td>
<td>60</td>
</tr>
<tr>
<td>15-MIAQ</td>
<td>5</td>
</tr>
<tr>
<td>16-JACA</td>
<td>13</td>
</tr>
<tr>
<td>17-NABI</td>
<td>11</td>
</tr>
<tr>
<td>18-POMU</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>550</td>
</tr>
</tbody>
</table>
TABLE 2. Total of neotropical shorebirds counted during the surveys in the *Pantanal* in October 1996.

<table>
<thead>
<tr>
<th>REGIONS</th>
<th>GRRH</th>
<th>OLCO</th>
<th>ANHI</th>
<th>WNHE</th>
<th>GREG</th>
<th>SNEG</th>
<th>CAEG</th>
<th>RTHE</th>
<th>WOST</th>
<th>MAST</th>
<th>JAST</th>
<th>BNIB</th>
<th>BFIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-PIIT</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2-SALO</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>13</td>
<td>42</td>
<td>21</td>
<td>67</td>
<td>1</td>
<td>45</td>
<td>5</td>
<td>89</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3-CUIA</td>
<td>0</td>
<td>129</td>
<td>8</td>
<td>73</td>
<td>1261</td>
<td>761</td>
<td>892</td>
<td>3</td>
<td>268</td>
<td>45</td>
<td>1604</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4-POCO</td>
<td>0</td>
<td>8</td>
<td>7</td>
<td>35</td>
<td>1282</td>
<td>544</td>
<td>747</td>
<td>0</td>
<td>1533</td>
<td>94</td>
<td>476</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5-CACE</td>
<td>1</td>
<td>4544</td>
<td>13</td>
<td>160</td>
<td>653</td>
<td>103</td>
<td>14</td>
<td>9</td>
<td>420</td>
<td>163</td>
<td>371</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6-JAUR</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>15</td>
<td>115</td>
<td>10</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7-COGR</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>13</td>
<td>18</td>
<td>18</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>4</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8-PARA</td>
<td>0</td>
<td>65</td>
<td>15</td>
<td>172</td>
<td>610</td>
<td>119</td>
<td>30</td>
<td>7</td>
<td>48</td>
<td>47</td>
<td>70</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9-BACU</td>
<td>0</td>
<td>780</td>
<td>2</td>
<td>126</td>
<td>371</td>
<td>72</td>
<td>366</td>
<td>5</td>
<td>76</td>
<td>123</td>
<td>150</td>
<td>10</td>
<td>444</td>
</tr>
<tr>
<td>10-PAIA</td>
<td>0</td>
<td>734</td>
<td>16</td>
<td>577</td>
<td>1619</td>
<td>308</td>
<td>44</td>
<td>5</td>
<td>70</td>
<td>204</td>
<td>122</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>11-ALTA</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>16</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12-NHEC</td>
<td>14</td>
<td>23</td>
<td>14</td>
<td>70</td>
<td>1421</td>
<td>169</td>
<td>330</td>
<td>1</td>
<td>1119</td>
<td>39</td>
<td>714</td>
<td>26</td>
<td>34</td>
</tr>
<tr>
<td>13-BASA</td>
<td>0</td>
<td>26</td>
<td>2</td>
<td>28</td>
<td>419</td>
<td>113</td>
<td>662</td>
<td>0</td>
<td>612</td>
<td>35</td>
<td>430</td>
<td>0</td>
<td>190</td>
</tr>
<tr>
<td>14-NEGR</td>
<td>2</td>
<td>80</td>
<td>3</td>
<td>87</td>
<td>771</td>
<td>346</td>
<td>106</td>
<td>1</td>
<td>1409</td>
<td>91</td>
<td>429</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>15-MIAQ</td>
<td>0</td>
<td>322</td>
<td>6</td>
<td>140</td>
<td>2041</td>
<td>427</td>
<td>175</td>
<td>8</td>
<td>3990</td>
<td>79</td>
<td>1619</td>
<td>9</td>
<td>88</td>
</tr>
<tr>
<td>16-JACA</td>
<td>0</td>
<td>189</td>
<td>15</td>
<td>161</td>
<td>686</td>
<td>131</td>
<td>108</td>
<td>4</td>
<td>85</td>
<td>166</td>
<td>196</td>
<td>0</td>
<td>72</td>
</tr>
<tr>
<td>17-NABI</td>
<td>0</td>
<td>680</td>
<td>21</td>
<td>456</td>
<td>1264</td>
<td>83</td>
<td>6</td>
<td>7</td>
<td>1011</td>
<td>177</td>
<td>483</td>
<td>0</td>
<td>122</td>
</tr>
<tr>
<td>18-POMU</td>
<td>0</td>
<td>76</td>
<td>6</td>
<td>48</td>
<td>124</td>
<td>24</td>
<td>44</td>
<td>0</td>
<td>42</td>
<td>15</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>20</td>
<td>7665</td>
<td>141</td>
<td>2196</td>
<td>12715</td>
<td>3254</td>
<td>3597</td>
<td>62</td>
<td>10728</td>
<td>1291</td>
<td>6790</td>
<td>61</td>
<td>982</td>
</tr>
</tbody>
</table>

Continues
TABLE 2 (continuation). Total of neotropical shorebirds counted during the surveys in the *Pantanal* in October 1996.

<table>
<thead>
<tr>
<th>REGIONS</th>
<th>SPOO</th>
<th>SOSC</th>
<th>WFWD</th>
<th>BBWD</th>
<th>BRDU</th>
<th>MUDU</th>
<th>COSM</th>
<th>SNKI</th>
<th>OSPR</th>
<th>LIMP</th>
<th>YBTE</th>
<th>LBTE</th>
<th>BLSK</th>
<th>OTHERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-PIIT</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>2-SALO</td>
<td>45</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>24</td>
<td>34</td>
</tr>
<tr>
<td>3-CUIA</td>
<td>10</td>
<td>108</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>4</td>
<td>26</td>
<td>54</td>
<td>140</td>
</tr>
<tr>
<td>4-POCO</td>
<td>101</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3115</td>
</tr>
<tr>
<td>5-CACE</td>
<td>22</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>43</td>
<td>7</td>
<td>861</td>
</tr>
<tr>
<td>6-JAUR</td>
<td>6</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>160</td>
<td>85</td>
</tr>
<tr>
<td>7-COGR</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8-PARA</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>274</td>
</tr>
<tr>
<td>9-BACU</td>
<td>90</td>
<td>71</td>
<td>343</td>
<td>469</td>
<td>13</td>
<td>70</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>21</td>
<td>132</td>
<td>1784</td>
</tr>
<tr>
<td>10-PAIA</td>
<td>42</td>
<td>35</td>
<td>0</td>
<td>141</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>14</td>
<td>1</td>
<td>11</td>
<td>55</td>
<td>751</td>
<td>257</td>
<td>1398</td>
</tr>
<tr>
<td>11-ALTA</td>
<td>3</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>18</td>
<td>15</td>
<td>94</td>
</tr>
<tr>
<td>12-NHEC</td>
<td>313</td>
<td>48</td>
<td>825</td>
<td>449</td>
<td>7</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>57</td>
<td>70</td>
<td>31</td>
<td>1020</td>
</tr>
<tr>
<td>13-BASA</td>
<td>215</td>
<td>26</td>
<td>1042</td>
<td>577</td>
<td>18</td>
<td>24</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>204</td>
<td>5</td>
<td>27</td>
</tr>
<tr>
<td>14-NEGR</td>
<td>162</td>
<td>53</td>
<td>187</td>
<td>478</td>
<td>0</td>
<td>17</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td>85</td>
<td>584</td>
</tr>
<tr>
<td>15-MIAQ</td>
<td>786</td>
<td>22</td>
<td>50</td>
<td>10</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>56</td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>634</td>
</tr>
<tr>
<td>16-JACA</td>
<td>27</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>11</td>
<td>1</td>
<td>122</td>
<td>34</td>
<td>209</td>
<td>256</td>
<td>447</td>
</tr>
<tr>
<td>17-NABI</td>
<td>324</td>
<td>9</td>
<td>682</td>
<td>843</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td>33</td>
<td>52</td>
<td>148</td>
<td>369</td>
</tr>
<tr>
<td>18-POMU</td>
<td>13</td>
<td>2</td>
<td>10</td>
<td>438</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>23</td>
<td>55</td>
<td>107</td>
</tr>
<tr>
<td>Totals</td>
<td>2163</td>
<td>458</td>
<td>3079</td>
<td>3485</td>
<td>38</td>
<td>240</td>
<td>49</td>
<td>103</td>
<td>13</td>
<td>229</td>
<td>211</td>
<td>1461</td>
<td>1249</td>
<td>10993</td>
</tr>
<tr>
<td>REGIONS</td>
<td>SHOREBIRDS</td>
<td>ANATIDAE</td>
<td>CCCONIDAE</td>
<td>ARDEIDAE</td>
<td>PHALACROCORIDAE</td>
<td>STERNIDAE AND Rynchopidae</td>
<td>THERESKIORNITHIDAE</td>
<td>ACCIPITRIDAE</td>
<td>ANHIDRAE</td>
<td>OTHERS</td>
<td>NEARCTIC SHOREBIRDS</td>
<td>NEOTROPICAL SHOREBIRDS</td>
<td>TOTAL</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>----------------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>1-PIIT</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>38</td>
<td>3</td>
<td>29</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>2-SALO</td>
<td>6</td>
<td>6</td>
<td>147</td>
<td>203</td>
<td>5</td>
<td>33</td>
<td>2</td>
<td>10</td>
<td>12</td>
<td>0</td>
<td>30</td>
<td>596</td>
<td>425</td>
<td></td>
</tr>
<tr>
<td>3-CUIA</td>
<td>426</td>
<td>32</td>
<td>1935</td>
<td>3111</td>
<td>137</td>
<td>84</td>
<td>55</td>
<td>6</td>
<td>108</td>
<td>0</td>
<td>30</td>
<td>596</td>
<td>5894</td>
<td></td>
</tr>
<tr>
<td>4-POCO</td>
<td>9</td>
<td>65</td>
<td>2112</td>
<td>5733</td>
<td>15</td>
<td>0</td>
<td>19</td>
<td>6</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>7973</td>
<td></td>
</tr>
<tr>
<td>5-CACE</td>
<td>127</td>
<td>6</td>
<td>963</td>
<td>1803</td>
<td>4557</td>
<td>50</td>
<td>0</td>
<td>16</td>
<td>18</td>
<td>3</td>
<td>49</td>
<td>78</td>
<td>7543</td>
<td></td>
</tr>
<tr>
<td>6-JAUR</td>
<td>5</td>
<td>4</td>
<td>10</td>
<td>235</td>
<td>9</td>
<td>162</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td>7-COGR</td>
<td>12</td>
<td>0</td>
<td>19</td>
<td>57</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>12</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>8-PARA</td>
<td>27</td>
<td>92</td>
<td>166</td>
<td>1214</td>
<td>80</td>
<td>22</td>
<td>0</td>
<td>11</td>
<td>10</td>
<td>1</td>
<td>3</td>
<td>24</td>
<td>1623</td>
<td></td>
</tr>
<tr>
<td>9-BACU</td>
<td>421</td>
<td>2600</td>
<td>358</td>
<td>1070</td>
<td>782</td>
<td>156</td>
<td>456</td>
<td>29</td>
<td>71</td>
<td>2</td>
<td>126</td>
<td>295</td>
<td>5945</td>
<td></td>
</tr>
<tr>
<td>10-PAIA</td>
<td>126</td>
<td>358</td>
<td>398</td>
<td>3781</td>
<td>750</td>
<td>1063</td>
<td>17</td>
<td>32</td>
<td>35</td>
<td>2</td>
<td>13</td>
<td>113</td>
<td>6562</td>
<td></td>
</tr>
<tr>
<td>11-ALTA</td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>76</td>
<td>4</td>
<td>36</td>
<td>8</td>
<td>47</td>
<td>11</td>
<td>1</td>
<td>24</td>
<td>34</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>12-NHEC</td>
<td>554</td>
<td>1626</td>
<td>1931</td>
<td>2894</td>
<td>37</td>
<td>159</td>
<td>72</td>
<td>24</td>
<td>62</td>
<td>11</td>
<td>305</td>
<td>249</td>
<td>7370</td>
<td></td>
</tr>
<tr>
<td>13-BASA</td>
<td>16155</td>
<td>1705</td>
<td>1077</td>
<td>1440</td>
<td>28</td>
<td>209</td>
<td>198</td>
<td>0</td>
<td>26</td>
<td>4</td>
<td>3041</td>
<td>13114</td>
<td>20847</td>
<td></td>
</tr>
</tbody>
</table>

Continues
TABLE 3 (continuation). Total of birds/categories counted during the aerial surveys in the Pantanal in October 1996

<table>
<thead>
<tr>
<th>REGIÕES</th>
<th>AVES LIMÍCOLAS</th>
<th>ANATIDAE</th>
<th>CICONIDAE</th>
<th>ARDEIDAE</th>
<th>PHALACROCORIDAE</th>
<th>Rynchopidae</th>
<th>Sternaeae</th>
<th>Threskornithidae</th>
<th>Accipitridae</th>
<th>Anhistae</th>
<th>Outras</th>
<th>Outras</th>
<th>Neárticas</th>
<th>Neotrópicas</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-MIAQ</td>
<td>47</td>
<td>85</td>
<td>5849</td>
<td>4034</td>
<td>328</td>
<td>7</td>
<td>113</td>
<td>70</td>
<td>22</td>
<td>0</td>
<td>42</td>
<td>5</td>
<td>10555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-JACA</td>
<td>59</td>
<td>11</td>
<td>447</td>
<td>1506</td>
<td>204</td>
<td>635</td>
<td>112</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td>9</td>
<td>50</td>
<td>2995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-NABI</td>
<td>53</td>
<td>1593</td>
<td>1673</td>
<td>2323</td>
<td>701</td>
<td>238</td>
<td>154</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>50</td>
<td>6753</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-POMU</td>
<td>0</td>
<td>566</td>
<td>71</td>
<td>254</td>
<td>82</td>
<td>86</td>
<td>0</td>
<td>11</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1072</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totais</td>
<td>22046</td>
<td>9504</td>
<td>19087</td>
<td>31740</td>
<td>7806</td>
<td>3069</td>
<td>1233</td>
<td>320</td>
<td>478</td>
<td>31</td>
<td>5644</td>
<td>16402</td>
<td>95319</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BIRDS IN THE PANTANAL
WWF-Brazil is a Brazilian non-governmental organization dedicated to the conservation of nature aiming to harmonize human activity with biodiversity conservation and to promote the rational use of natural resources for the benefit of current and future generations. WWF-Brazil was created in 1996 in Brasilia and has several projects all over the country and is part of the International Network Environmental Organization WWF, which works in more than 100 countries and counts on the support of 5 million people worldwide, including associates and volunteers.

WWF-Brazil Headquarters
SHIS EQ QL 6/8 Conjunto E
CEP 71620-430 Brasilia, DF Brazil
Tel (+55) 61-3664 7400
Fax (+55) 61-3664 7474
E-mail: panda@wwf.org.br
www.wwf.org.br

Pantanal regional office
Rua 13 de Maio, 2500, sala 108
Centro. CEP 79002-356
Campo Grande MS Brazil
Tel (+55) 67-3325 0087